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Purpose. Construction of a mathematical model of the aircraft engine TV3-117 based on the results of observations
of its reaction to environmental disturbances. The solution of the problem of identifying a dynamic model of TV3-117
engine in onboard conditions by classical methods, including the method of least squares and approximation by cubic
splines, and neural network, by building a neural network according to source data. Methodology. The work is based
on the methods of probability theory and mathematical statistics, neuroinformatics, information systems theory and data
processing. In this paper, the Elman recurrent network with one hidden layer with a sigmoid neuron activation function
with feedback was applied. Results. A method was developed for determining the optimal structure of a neural net-
work, which consists in determining the neural network architecture, choosing the optimal algorithm for finding weights
of neurons and teaching a neural network, analyzing the effectiveness of various neural network training algorithms,
determining the structure of a neural network, which consists in finding the minimum error of neural network training
depending on the number of neurons in the hidden layer, as well as in the analysis of the effectiveness of the results.
The ability of the developed neural network to smooth out white noise was proved by determining the identification
error of the rotational speed of the turbocharger’s rotor, which was 0,005 % and did not exceed the limit-permissible
value of 0,5 %. Originality. The scientific novelty of the results obtained is as follows: For the first time, a method was
developed for determining the optimal structure of a neural network, which made it possible to solve the problem of
identifying a dynamic model of an aircraft engine, the TV3-117, in onboard conditions with minimal errors. The meth-
od of identifying the technical condition of the TV3-117 aircraft engine in onboard conditions, which differs from the
existing ones due to the use of neural network technologies, makes it possible to increase the reliability of monitoring
and diagnostics of the technical condition of the TV3-117 aircraft engine under its flight conditions. Practical value.
The developed neural network can be one of the units of the expert system that can automatically make decisions re-
garding the technical condition of the aviation engine TV3-117 in flight modes and provide information to the crew
about the possibility of further safe movement of the aircraft. The task of developing an expert system can be effective-
ly solved using the mathematical apparatus of neural networks, since its use increases the reliability and accuracy of
classification of modes, identification, control, diagnostics, time series analysis (forecasting), debugging of engine pa-
rameters, etc., which will increase reliability of obtaining the necessary results. References 10, table 1, figure 4.
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3AJAYA IIEHTU®IKALIL JTMHAMIYHOI BATATOPEXKUMHOI MOJIEJII
ABIAIIMHOT'O JIBUT'YHA TB3-117 Y HOJIbOTHUX PEXKUMAX
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KpemeHnuympkuit Tb0THUI Kostepk HarioHamsHOTO aBiamiiftHOTO YHIBEPCHTETY
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Po3B’s3aHO aKTyallbHY HAyKOBO-TIPAKTUYHY 3aady ifeHTHGiKkauii JuHAMiYHOT MoOJelsi aBiallifHOTrO JBHUTYHa
TB3-117 y 60pTOBHX yMOBaX KJIACHYHUMH METOAAMH, JIO SKHX HaleXaThb METOJ| HAMEHIINX KBAJIPaTIiB i allpoKcuMa-
il KyOIYHUMHU CIUTaiiHaMHM 1 HelpOMepeKeBUMH, — IUIIXOM NOOY/I0BH HEHPOHHOI MEpexki 3TiIHO 3 BUXITHUMH JaHUMH.
Po3po0iieHo MeTOIMKY BU3HAYECHHS ONTHUMAJIbHOI CTPYKTYPH HEHPOHHOI MEpexi, sika MoJsirac y BU3HAYCHHI apXiTek-
TypH HEHWPOHHOI Mepexi, BUOOPI ONTHMAILHOTO alrOpUTMY MOUIYKY Bar HEHpOHIB i HABYaHHS HEWPOHHOI Mepexi,
aHaTizy e(eKTUBHOCTI PI3HHX AJTOPUTMIB HaBYAaHHS HEHPOHHOI Mepexi, BU3HAUEHHS CTPYKTYPH HEHPOHHOI Mepexi
110710 3HAXO/DKEHHS MiHIMaJIbHOT TOMMJIKM HAaBYAHHS HEHPOHHOT MepesKi 3aJIeKHO BiJl KUIBKOCTI HEHPOHIB y NPHUXOBa-
HOMY IIapi, a TAKOXX B aHaTi31 e(EeKTUBHOCTI OTPUMAaHKX pe3yabTaTiB. Y poOOTi 3aCTOCOBAHO peKypeHTHY Mepexy Ei-
MaHa 3 OJTHIM NPUXOBAaHHUM IIAPOM i3 CUTMOIZHOIO (DYHKII€I0 aKTUBALlil HEHPOHA 31 3BOPOTHUM 3B’SI3KOM, 1110 00yMOB-
JICHO CKJIaJIHOIO (hOPMOIO 4acOBHX Ps/IiB JTMHAMIKH 3MiHM MapameTpiB asiariiiHoro asuryHa TB3-117. Crnoci6 oprawi-
3a11ii po6oTH pekypeHTHOI Mepexi Enmana o6paHo «oauH y Oaratoy (one-t0-many) — IpruxoBaHUi ap iHILiaTi3y€eThCs
OJTHMM BXOJIOM, 3 JIAHIIIOXKKa HOTO HACTYIIHHUX CTaHiB I'€HEPYIOTHCS BUXOIU Mepexi. Pe3yipraTu TecTyBaHHS 3acTOCO-
BaHOT HEHPOHHOI MepeXxi MoKa3aly, 10 HalMEHIa TIOMUJIKAa HaBYaHHS HEWPOHHOT MEpexi 3 OJHUM BXOJOM i JBOMA
BHUXOAaMH (3rimHO 3 mocTaBieHor0 3amayeio) ckiana 0,006 % 3a HasIBHOCTI ABOX HEHWPOHIB y mMpuxoBaHOMY miapi. Tec-
TyBaHHS 3aCTOCOBAaHOI HEHPOHHOI MEpeXKi Ha 3aTHICTh 3TIIaKyBaTH OUTHI IIyM MOKa3aio, o moxuoka imenTudikamii
4acTOTH 00epTaHHs poTopa Typbokommpecopa ckiama 0,005 % i He nepeBHIUIa TPAHUIHO JOMYCTUMOT0 3HadeHHs 0,5
%. Po3pobiena HelipoHHA Mepexa MOKe OyTH OJTHUM 3 OJIOKIB HEHPOMEPEKeBOI €KCIIEPTHOT CUCTEMH, 31aTHOI aBTO-
MaTHYHO NMPUHAMATH PilICHHS 1010 TEXHIYHOro cTaHy aBiauiiiHoro nsuryna TB3—117 y pexxumax mossoTy 1 HajiaBaTu
1H(pOPMAIIIO eKilaXy PO MOXKIMBICT MOAANBIIOTO OE3MEYHOr0 PyXY MOBITPSHOTO CY/HA.

Koarouosi cioBa: aBiauiliHuil ABUTYH, ineHTHdiKalis, HEHpOHHA Mepexka, MaTeMaTH4Ha MOJIeNlb, METOJ Hai-
MEHIINX KBaApaTiB, KyOI4HUI CIUIaiH.

PROBLEM STATEMENT. The need to solve the gine TV3-117 in onboard conditions is caused by the
problem of controlling the parameters of an aircraft en- need to improve the quality of engine control in condi-
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tions of uncertainty. Such uncertainty conditions, or
«non-factors», include sensor failures, communication
link failures with sensors, false failures, and measure-
ment errors (noise). A control system that relies on in-
adequate data can make an incorrect decision, which, in
the future, will reduce the quality of engine control [1].
Thus, in these conditions, the main requirements for the
engine management system are: ensuring operational
and quality control and diagnostics of its parameters in
the conditions of «non-factorsy.

Reserving full-time sensors aboard the flight appa-
ratus only partially solves the problem and is often
fraught with hardware and time costs. At present, the
most promising approach is to use the mathematical
model of the TV3-117 aircraft engine (individual or
average) as an additional measurement channel. Due to
the high sensitivity of the mathematical model, which
adequately describes the physical processes occurring in
aircraft engines, to external disturbances, with an in-
crease in the integration step leads to a significant in-
crease in the calculation error and is more than two per-
cent [2]. For a mathematical model serving as an addi-
tional measurement channel, taking into account other
problems solved on board the aircraft, approximately
10 % of processor time is allocated, i.e. 2 ms. This
means that the minimum time for a single measurement
of the onboard computer is 80 s, which is not possible
under the board conditions [2].

Therefore, the use of the «complete» mathematical
model in the conditions of on-board implementation is
not effective and the latter requires significant reduc-
tions. In practice, a compromise between the complete-
ness of the mathematical model description and its accu-
racy is achieved based on the requirements of the tech-
nical specifications for a specific type of aircraft engine
and practical recommendations of previous implementa-
tions of a specific engine on board an aircraft.

In solving the problem of identifying the mathemati-
cal model of the TV3-117 aircraft engine, the «classi-
cal» approach is used in the work, which assumes that
the physical theory of the object is missing, or cannot be
used for one reason or another. The identification object
is a so-called «black box» with a number of inputs and
one or several outputs. Thus, the task of identification is
the construction of a mathematical model of the aircraft
engine TV3-117, which identifies the main modes of its
operation.

MATERIAL AND RESULTS. For the mathematical
model of the aviation engine TV3-117, the input param-
eters are: Gy — fuel consumption (kg/s); Ty — ambient
temperature (K); Py — pressure (mm. mercury); and at
its output: n — rotational speed of the rotor of the turbo
compressor (min'), T; — gas temperature behind
the turbine (K). In the general case, the parameters
measured on a real engine were obtained in the process
of simulation modeling on its adequate element-wise
mathematical model and represent a sequence consisting
of 8000 points for the 5 parameters listed above. The
first 4000 points obtained during the computational ex-
periment are determined from the condition:
Ty = 288,15 K, Py = 760 mm. Hg; and the following
4000 points were calculated taking into account:
H = 2000 m. Using the available data, it is necessary to

build an approximating function based on the require-
ments for the mathematical model of the TV3-117 air-
craft engine: providing identification errors of no more
than 1 % with a minimum memory size and maximum
speed, which is most important in real-time on-board
implementation.

We formulate the problem of identification in a gen-
eralized formulation for a neural network implementa-
tion. Let the TV3-117 aircraft engine as a nonlinear
dynamic object be described by a system of differential
equations of the form:

X()=F(X().U(t).V(t).AL), @
Y(1)=G(X(t),U(t).V (1)), )

where X(t) — vector of engine state variables; U(t) —
vector of control actions; V(t) — vector-torus of external
disturbing influences; Y(t) — vector of the observed co-
ordinates; F, G — nonlinear vector functions. Then the
main reasons for the change in the states of the engine
system are the change in the vectors U(t) and V(t), the
parameters of the engine A(t), and the change in the
operators F and G as it functions.

The solution of the problem of identification of the
TV3-117 aircraft engine is reduced to the definition
of an approximate dependence:

YM (k)= (Y™ (k=1),Y" (k-2),...U (k),

U(k-1),..) ®)
between the output vector Y(k) and the input vector U(k)
at discrete instants of time k = 0, 1, 2,... according to
the results of observations of these quantities at a certain
interval in the course of engine operation. In this case,
the identification error, i.e. the difference between the
engine outputs (measured values of the thermogas-
dynamic parameters of the engine) and the outputs of
the dynamic model should not exceed the specified al-
lowable value &,4q:

"Y (k)_YM (k)" < &g

with the same input effects U(K).

The input vector represents the values of the variable
Gr(ajoy) (Where ;g is the position of the control knob),
as well as the signals at the output of the neurons of the
hidden layer that are delayed by one clock cycle of dis-
crete time, and at the moment of time k implements the
display:

U (k) =[Gy (e (K)) Vi (k=)W (k=1)],  (5)
where V is the state vector of the neurons of the hidden
layer.

The vector of the outputs Y,(t) and Y,(t) includes the
components Y4(t) = n(t); Y,(t) = T5(t).

The construction of an identification model begins
with the choice of the model form, i.e. type of depend-
ence (3). In practice, two cases are possible [3]:

1) The form of the mathematical model is known in
advance, and the task of identification is reduced to de-
termining the coefficients of this model. Sometimes a
model can be defined as a criterion dependency, and the
task of identification in this case is reduced to the de-
termination of power indicators of the criteria.

(4)
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2) The form of the mathematical model is unknown
in advance. In this case, to build an identification model,
segments of infinite series are used, and the task is to
determine the number of members of the series and the
coefficients for them.

To identify the form of mathematical model of the
TV3-117 aircraft engine, this paper discusses the use of
cubic splines (CS), polynomials obtained by the least
squares method (LSM), and neural networks.

The assessment of the possibility of using neural
networks to build models of identification of the TV3-
117 aircraft engine was carried out according to the fol-
lowing procedure:

1) Definition of neural network architecture. The
following architectures were considered for building an
approximate mathematical model of the TV3-117 air-
craft engine:

—a network of direct signal propagation with one
hidden layer (activation functions: linear, sigmoid, and
hyperbolic tangent) with common feedback;

— the Elman recurrent network with one hidden layer
(activation functions: sigmoid and hyperbolic tangent)
with and without common feedback.

2) Determination of the activation functions of neu-
rons of the neural network, in which the following func-
tions were considered: sigmoidal, hyperbolic tangent
and linear.

3) Analysis of the effectiveness of various neural
network learning algorithms, which are described in
detail in [4, 5], where the choice of the most optimal
one is justified — an additive step of learning a neural
network, which is implemented as a gradient method.

4) Determination of the structure of the neural net-
work, which was carried out in 2 stages:

—at the first stage, preliminary training of several
neural networks, differing in the number of neurons in
hidden layers, is carried out;

— at the second stage, the process of pre-learning the
optimal set of non-core networks and determining the
best structure from this set is carried out.

5) Analysis of the effectiveness of the solution.

The task of identifying the mathematical model of
the TV3-117 aircraft engine in the neural network basis
is reduced to the parametric problem of finding the syn-
aptic weights of neurons. The algorithms for searching
for weights of neurons or learning neural networks are
reflected in many papers [6, 7]. To implement the learn-
ing algorithms, a training sample is necessary, assigning
the calculated output values to the input effects of the
mathematical model of the engine. After training, the
resulting weights and displacements of the neural net-
work are used for the onboard neural network, which is
a real-time model of the TV3-117 aircraft engine.

The initial data for the training of the model were
recorded during the flight tests of the TV3-117 aircraft
engine onboard the Mi-8MTV helicopter using an
onboard data recording system, which were recorded for
320 seconds of real flight with a sampling period of 1 s.
The obtained dynamics of changes in the parameters of
the aircraft engine TV3-117 indicates the complexity of
the shape of the time series of these parameters (fig. 1).
The appearance of the curves indicates the need to take
into account the values of the parameters and the accu-
mulation of information in the model’s memory, which
is impossible without the use of recurrent neural net-
works. In this case, it is Elman’s neural network.

An
104
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Figure 1 — Chart of dynamics of parameters changes of aircraft engine TV3-117 intime: 1 — ajo,; 2— T, ;3 -n

In fig. 1 in the time range from 21 to 75 s, there is a
sharp surge in all three parameters, which is explained
by the transient mode of operation of the engine. Since
it is known that most of the time (about 85 %), the TV3-
117 aircraft engine is operated at steady state conditions
and only about 15 % at unsteady and transient operating
conditions. Since the neural network models of the
TV3-117 aircraft engine, implemented using a percep-
tron, cover only the steady state operation of the aircraft
engine, to expand the range of the monitoring and diag-
nostics process of its technical condition, a dynamic
multimode model of the aircraft engine TV3-117 is be-

ing developed, taking into account unsteady and transi-
ent modes of its operation, the implementation of which
is possible with the use of recurrent neural networks,
including Elman networks. The way of organizing the
work of the recurrent network of Elman is chosen one-
to-many — the hidden layer is initialized with one input,
the network outputs are generated from the chain of its
subsequent states.

As a result of testing the previously reviewed archi-
tectures, it was found that a neural network with a linear
transfer function in a hidden layer poorly solves the In
the process of additional training of the neural network,
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it was established that the Elman recurrent network
(fig. 2) is optimal, having 2 neurons in the hidden layer
(fig. 3), as well as a logistic sigmoid as a function of
neuron activation. In this case, the maximum learning
error was no more than 0,35 % (of the interval of varia-

Input layer

G, (ajuy)

Hidden layer

tion of the parameter). Testing of this neural network
showed that it is robust to external disturbances, which
have, for example, the additive component of white
noise (M =0, ¢ = 0,01), and the maximum error in this
case did not exceed 0,5 %.

Outlet layer

71

Figure 2 — The structure of the neural network dynamic model of the TV3-117 aircraft engine

For training the Elman network, the same gradient
methods [4, 5] are used as for conventional direct prop-
agation networks, but with certain modifications, to
correctly calculate the error function gradient. It is cal-
culated using a modified back-propagation method —
Back propagation through time (back-propagation
method with network expansion in time, BPTT) [8],
which expands the sequence, turning the recurrent net-
work into a “normal” one. As in the method of back
propagation for networks of direct distribution, the pro-

cess of calculating the gradient (changing weights) oc-
curs in the following three stages.

— direct pass — calculation of the state of the layers,

— backward pass — calculation of layer error,

— calculation of changes in weights, based on the da-
ta obtained in the first and second stages.

Having found a method for calculating the gradient
of the error function, one can apply one of the modifica-
tions of the gradient descent method [4, 5].

Change the error on the output of the neural network.
depending on the number of neurons in the hidden layer
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Figure 3 — Neural network error depending on the number of neurons in the hidden layer

The graphs of changes in the neural network learn-
ing error as a function of the number of iterations (1 —
with 2 neurons in the hidden layer, 2 — with 3 neurons in
the hidden layer; 3 — with 4 neurons in the hidden layer;
4 — with 5 neurons in the hidden layer) (fig. 4) indicate
the minimal error of learning of the neural network with
the presence of two neurons in the hidden layer.

Fig. 5 shows the dependence of the identification er-
ror measurement for the rotor speed of a turbo-
compressor n depending on the time T, s, where 1 — real
value of the parameter, 2 — value of the parameter from
the neural network in the absence of noise, 3 — data
from the neural network with an additive noise of 1 %
at the entrance.
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Figure 4 — Graphs of changes in learning errors depending on the number of iterations:
1 — with 2 neurons in the hidden layer; 2 — with 3 neurons in the hidden layer; 3 — with 4 neurons in the hidden layer;
4 — with 5 neurons in the hidden layer
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Figure 5 — Fragment of neural network testing for the ability to smooth noise

The use of LSM for the identification of a mathe-
matical model of the TV3-117 aircraft engine is thor-
oughly considered in [2, 9].

The method of CS approximation [10] also belongs
to the «classical» methods for identifying mathematical
models. The analysis of these methods shows that, as
applied to the solution of this problem, compared with
the LSM, the CS provide an accurate approximation of
the engine characteristics, but require large amounts of
memory to store the coefficients.

So with an increase in the number of control points
50 times, the CS reach an approximation error close to
the machine 0. But this number of control points re-
quires 320 times more RAM than the LSM. Therefore,
the number of reference points is selected from the con-
ditions of sufficient accuracy (1 % of the parameter var-

iation interval) of the approximation. So for a CS, this
accuracy is achieved when 152 reference points are se-
lected from the entire set of available points (8000
points). An increase in the degree of the polynomial
LSM does not lead to an improvement in the quality of
identification, but on the contrary leads to its deteriora-
tion. In this paper we considered polynomials up to the
8th degree. As a result of comparing polynomials of
varying degrees, it was found that polynomials of the
5th and 6th degree provide minimal error, while poly-
nomials of the 7th and 8th degree provide a steady in-
crease in the approximation error.

Table 1 shows the characteristics of the mathemati-
cal model of the aviation engine TV3-117, obtained
using the methods of least squares and a neural network.

Table 1 — Comparative analysis of identification methods

Absolute error Absolute error Absolute error
Identification methods (6=0,01), % (6 =0,03), % (6 =0,05), %
n T, n T, n T,
Least squares method 0,75 0,86 0,69 0,79 0,68 0,78
Elman neural network 0,54 0,43 0,57 0,46 0,61 0,49

Table 1 follows the advantage of neural network
methods in terms of noise. In some cases, the error of
dynamic identification using the classical method is
almost 2 times higher than similar calculations obtained
using the EIman neural network, which shows the high
robustness of neural networks to external disturbances.

CONCLUSIONS. According to the results of the re-
search:

1. The possibility of using neural networks to build
models for the identification of complex objects, such as
the TV3-117 aircraft engine, is shown.
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3ATAYA HAEHTUOUKAIIMA JMHAMUYECKON MHOT'OPEXKUMHOM MOJIEJINA
ABUAINIMOHHOT O ABUT'ATEJIA TB3-117 B HIOJIETHBIX PEXAKUMAX

IO. H. IlImenes, C. U. Baanos, U. I'. lepeBsinko, U. A. lepsadouna, JI. U. Unxosa

Kpemenuyrckuii neTHbI Kojutek HannoHaIbHOTO aBHAIIMOHHOTO YHUBEPCUTETA

yi. [ToGenpl, 17/6, r. Kpemenuyr, 39605, Ykpauna. E-mail: ser26101968@gmail.com

Pemrena akTyanpHas HaAy9HO-IIPAKTHYECKas 3a7ada UIACHTH(PUKALNN JTHHAMUYECKOH MOJIETH aBHAIlMOHHOTO JBHTa-
tenst TB3-117 B GOPTOBBIX YCIOBHSX KIACCHYECKUMHU METOJAMH, BKIIOYAIONINE METO]] HAUMEHBIITNX KBaIpaTOB H afl-
MIPOKCUMALINN KyOHMYECKUMH CIUIaifHaMu, U HeHPOCETEeBBIMU — IIyTEM ITOCTPOEHHSI HEMPOHHON CETH B COOTBETCTBUH C
HCXOIHBIMU JaHHBIMHU. Pa3paboTana MeTonnKa ONpeeseH!s] ONTHMANbHON CTPYKTYpHl HEHPOHHOH CeTH, 3aK/IIo4aio-
IIasicsl B ONPEAETICHNH apXUTEKTypbl HEHPOHHOH ceTH, BEIOOpE ONTHMAILHOTO alNrOPUTMa TIOMCKa BECOB HEHPOHOB H
o0ydeHust HEHPOHHOW ceTH, aHaiu3a 3(P(HEKTUBHOCTH PA3INYHBIX AITOPUTMOB O0YyUEHHS HEHPOHHOH ceTH, omnpenerne-
HUSI CTPYKTYPBl HEHPOHHOM CETH, 3aKJIF0Yaroniascsl B HaX0XKICHUH MUHUMAJIBHON OMMOKM 00y4eHHs HEHpOHHOI ceTH
B 3aBUCHMOCTH OT KOJIMYECTBA HEHPOHOB B CKPHITOM CJIOE, a TAK)XKE B aHaM3e d3(PEKTUBHOCTU TOJyYEHHBIX PE3yJIbTa-
TOB. B paboTe npumeHeHa pekyppeHTHas ceTh DJIMaHa C OJTHMM CKPBITBIM CJIOEM C CUTMOWIHON (YHKIMEH aKTHBaluu
HelipoHa ¢ 0OPaTHOM CBA3BIO, YTO OOYCIIOBJIEHO CIIOXKHOM (hOpMON BPEMEHHBIX PSAIOB TUHAMUKH N3MEHEHHS IapaMeT-
poB aBuarmonHoro asurareinst TB3-117. Croco6 oprannsanuu paboThl peKyppeHTHON ceTH DiMaHa BBIOpaH «OJUH BO
MHOTO» (0one-t0-many) — CKpBITBIA CIIOW MHHUIIHATU3UPYESTCS. OJJHUM BXOJIOM, 3 IEMIOYKH €rO MOCIEIYOIUX COCTOS-
HUI T€HEPUPYIOTCS BBIXOABI CETU. Pe3ynbTaThl TECTUPOBAHUS NPUMEHEHHONW HEHPOHHOH CETH IOKa3alld, 4TO Hau-
MeEHbIIIas omuoKka 00ydeHUs] HEHPOHHOU CETH C OJHUM BXOJIOM U JIBYMS BBIXOJaMH (COTJIACHO MOCTAaBIECHHOW 3aja4e)
cocraBmia 0,006 % npu Hadu4yuu IBYX HEHPOHOB B CKPHITOM ciioe. TecTHpoBaHUE NPHUMEHEHHON HEWPOHHOW CeTH Ha
CHOCOOHOCTH CTIIaXKMBATh OEINbIN IIyM MOKAa3aJo0, YTO MOTPEITHOCTh MACHTH(HUKAIIMN YacTOTHl BPAIEHHsI pOTOpa Typ-
6oxomnpeccopa cocrasuiia 0,005 % u He npeBbICHIIA I'PaHUYHO JorrycTMoe 3HaueHue 0,5 %. Paspaborannas HelpoH-
Hasl CETh MOXKET SIBJISIThCS OJHUM M3 OJOKOB HEHpPOCETEBOW IKCIEPTHON CHCTEMBI, CIOCOOHOI aBTOMaTHYECKH ITPUHH-
MaTb PEIIEHUs] OTHOCUTEIBHO TEXHUYECKOT0 COCTOSHUS aBHallMOHHOrO aBuratens TB3-117 B pexxumax nosuera u mpe-
JIOCTABJISITh HH(POPMALMIO IKHITAKY O BO3MOXKHOCTH JAJIbHEHIIEro 0e30MacHOro JBMXKEHHUS BO3AYIIHOTO CY/IHA.

KnroueBble c10Ba: aBUALMOHHBINA JABUTaTelNb, HACHTH(UKALNS, HEHPOHHASI CETh, MaTeMaTuuecKass MOJIesb, METO]
HauMEHBIIINX KBaIPaTOB, KyOUIECKUH CTUIaiiH.

Crarrs Hagiinia 21.01.2019.
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