KOMITHOTEPHI HAYKA

YJIK 004.8 DOI https://doi.org/10.32782/1995-0519.2025.1.16

ANEW APPROACH TO CODE GENERATION
FOR EFFICIENT NEURAL COMPUTATION
IN ACCESSIBLE ARTIFICIAL ECOSYSTEMS

Mykhailo Zachepylo
Postgraduate Student at the Department of Information Systems named by V. O. Kravets
National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova str., Kharkiv, Ukraine,

61002, Mykhailo.Zachepylo@cit.khpi.edu.ua
ORCID: 0000-0001-6410-5934

Oleksandr Yushchenko

Candidate of Physical and Mathematical Sciences, Professor,

Professor at the Department of Information Systems named by V. O.Kravets,

National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova str., Kharkiv, Ukraine,

61002, agyu@kpi.kharkov.ua
ORCID: 0000-0002-0078-3450

The purpose of this study is to address the critical computational challenges faced in Artificial Life (ALife) research,
particularly in achieving scalable simulations of large populations of agents with evolving and heterogeneous neural
networks. These simulations are essential for investigating complex phenomena such as adaptation, self-organization, and
the emergence of intelligence (noogenesis) in artificial ecosystems. However, the computational overhead associated with
evolving neural architectures, especially in open-ended environments with high variability, remains a significant barrier.
The methodology proposed in this study employs a dynamic code generation approach that leverages the V8 JavaScript
engine for Just-In-Time (JIT) compilation. This approach dynamically transforms neural network topologies into
computational graphs, enabling the efficient generation of minimal instruction sets for activation functions, which are then
compiled and optimized at runtime. By focusing on active subgraphs and pruning unnecessary computations, this method
significantly reduces the overhead typically incurred by interpreting neural networks in each simulation step.

The findings demonstrate that the proposed approach outperforms traditional static interpretation methods, as
exemplified by the Neataptic library. Benchmarking experiments conducted on an M1 Pro processor showed a 23 %
reduction in timestep processing time, with the capability to handle up to thousands of agents efficiently. This scalability
ensures the feasibility of running long-term ALife simulations, preserving high biological fidelity while reducing
computational costs.

The originality of this work lies in its novel application of dynamic code generation to evolving neural networks
in ALife models, an area traditionally dominated by frameworks optimized for static neural topologies or batch-based
operations. By demonstrating that JavaScript, a non-traditional language for high-performance simulations, can achieve
competitive efficiency through runtime optimization, this research broadens the accessibility of ALife simulations to a
broader audience, including those focusing on educational or entertainment applications.

The practical value of this approach is its potential to enable more extensive and detailed investigations into emergent
intelligence and behavior in artificial ecosystems. By overcoming computational limitations, the framework supports long-
term studies of noogenesis, offering new insights into how adaptive intelligence and novel behaviors develop in evolving
populations. In conclusion, this study presents a scalable, efficient, and flexible solution to the computational challenges
of ALife simulations, forming a foundation for future research. Promising directions for further development include
distributed simulation architectures and hybrid GPU-accelerated approaches to enhance scalability and performance.

Key words: artificial life, neural networks, neuroevolution, performance optimization, dynamic code generation.

Introduction. Artificial Life (ALife) research The principal scientific problem is developing
aims to deepen our understanding of biological a new approach for efficient neural computations
and cognitive processes by synthesizing them in to achieve large-scale ALife simulations that
computational environments. Since its inception, simultaneously accommodate numerous agents,
AlLife has spanned a range of models, from discrete each with a unique and evolving neural architecture,
cellular automata to sophisticated continuous-space without incurring prohibitive computational
simulations [1], with a key focus on exploring overhead. This challenge becomes significantly

how complex phenomena such as adaptation, self- pronounced when considering open-ended evolution
organization, and intelligence can emerge in virtual and high-frequency data logging, both pivotal
populations. for studying emergent cognitive and behavioral

BicHuk KpHY imeHi Muxanna Octporpaacbkoro. Bunyck 1/2025 (150)
125

KOMITHOTEPHI HAYKA

traits, making such Alife simulations accessible
for education and entertainment without specific
hardware requirements.

Several computational paradigms have attempted
to resolve these performance bottlenecks. Traditional
statically compiled languages offer high raw speed
but can introduce significant overhead when agent
architectures change frequently. Conversely,
dynamic and JIT-compiled environments can handle
heterogeneous workloads more flexibly, yet they
may suffer from throughput issues when agent
populations scale. Additionally, the underlying
spatial representation, ranging from simple grids
to fully 3D continuous spaces, affects collision
detection, movement rules, and perception modeling
complexity. Identifying strategies that integrate large
populations, evolving topologies, and complex spatial
environments in a way that balances computational
efficiency with biological fidelity remains nontrivial.

The actuality of addressing this issue is
underscored by the growing emphasis on
investigating noogenesis — intelligence emerging
through long temporal horizons and large
population sizes. Inadequate scalability can
truncate simulations, omitting critical evolutionary
transitions and interactions. By developing and
refining computational strategies that allow for more
extensive and prolonged yet accessible runs, the
ALife community stands to make significant progress
in uncovering how adaptive intelligence and novel
behaviors materialize in artificial ecosystems.

Literature review. ALife research spans
decades of efforts to create and explore artificial
ecosystems where emergent phenomena, such
as evolution, adaptation, and intelligence, can
be studied under controlled conditions. Various
models, methodologies, and computational tools
have been proposed, each contributing to different
facets of the field.

Genetic algorithms (GAs), which simulate the
process of natural selection, provide a foundational
approach to studying evolutionary dynamics in
artificial systems[2]. GAs have proven effective for
optimizing static problems and demonstrating basic
evolutionary mechanisms. However, their focus on
fixed, fitness-maximizing objectives limits their
application to open-ended evolutionary systems
where emergent complexity and adaptive intelligence
are of interest. Expanding on this foundation, models
of neural evolution, such as NEAT, introduced
methods for evolving neural network architectures
alongside weights, allowing agents to develop more
complex behaviors over time [3].

Efforts to capture richer, biologically inspired
dynamics have led to the development of spatially
explicit ALife models. Early systems, such as
cellular automata, were designed for simplicity
and computational efficiency, relying on grid-based
environments to facilitate discrete agent interactions.
While these models help explore self-organization
and adaptation, they inherently lack the complexity
of continuous-space environments. PolyWorld,
a seminal 3D ALife system, bridged this gap by
incorporating a non-grid environment, agent vision,
and biologically inspired rules governing neural
processing and behavior [4]. PolyWorld demonstrated
that higher-dimensional environments could foster
richer emergent phenomena, such as predator-prey
dynamics and cooperative behavior. However, the
computational overhead associated with continuous
3D physics and collision detection has historically
limited its scalability to smaller populations.

The computational bottlenecks associated with
large-scale simulations have inspired researchers
to explore hardware acceleration and optimized
frameworks. TensorFlow [5] and JAX [6], both widely
used in deep learning, provide GPU-accelerated
tensor operations well-suited for training large,
homogeneous neural networks. Recent adaptations
of these frameworks, such as tensorized NEAT [7],
attempt to extend their utility to evolving populations
of neural networks. While these efforts show promise,
their reliance on batch operations and static population
makes it impractical for a dynamic population
where networks could be added and removed in
the population in each simulation step. GPU-based
methods often struggle with the irregular memory
access and branching logic inherent in these systems,
leading to diminishing performance gains [8].

An alternative to tensor-based frameworks
lies in the use of Just-In-Time (JIT) compilation,
as exemplified by the V8 JavaScript engine [9],
Python JAX. Unlike statically compiled languages,
JIT-compiled environments can dynamically
optimize function execution at runtime, making
them particularly well-suited for workloads with
frequent topology mutations and highly varied agent
behaviors. JIT-compiled languages have shown
potential for efficiently managing the heterogeneity
of ALife models. Several studies advanced in JIT
compilation for specific hardware [10, 11]. Still, they
focused on layered architectures and large scales,
making them inefficient for many neural networks
built from evolved topologies.

Despite these advances, the field lacks a
unified framework for efficiently simulating large-

BicHuk KpHY imeHi Muxanna Octporpaacbkoro. Bunyck 1/2025 (150)

126

KOMITHOTEPHI HAYKA

scale populations of agents with evolving neural
networks, especially in open-ended environments.
The existing literature demonstrates that while
higher-dimensional spaces and richer dynamics
enable more nuanced behaviors, they impose
prohibitive computational demands. Similarly,
while frameworks like TensorFlow, JAX, and static
languages provide strong baselines for performance,
they fail to address the unique challenges posed
by heterogeneity and dynamic evolution. This
gap underscores the need for novel optimization
strategies that balance computational efficiency,
flexibility, and environmental richness, forming the
basis of the present study

Methods and results. We evaluate the efficiency
of neural network simulations using the ALife
model as the base [1]. It uses modified NEAT to
evolve network topology and weights with the
physical body of creatures, and neural networks
have sensory inputs, motor outputs, and processing
units with possible recurrent connections. In this
model, primitive creatures can evolve via splitting
and mutation when energy is enough by consuming
food resources, and obstacles are omitted in a 2D
planar environment. The use of JavaScript as the
primary programming language for this study
warrants explanation. While JavaScript is not
traditionally associated with high-performance
computing or neural network simulations, it
offers several advantages that align with the goals
of this. JavaScript’s widespread adoption, ease
of deployment via web-based interfaces, and
integration with modern JIT compilation engines
like V8 make it a uniquely accessible choice for
educational and entertainment-focused applications
without requiring specific hardware. By leveraging
the V8 engine’s dynamic optimization capabilities,
we demonstrate that JavaScript can achieve
competitive performance for simulating evolving
neural networks in large-scale ALife environments
despite its perceived limitations.

We benchmarked two approaches: (1) a baseline
approach using the Neataptic library [12], a
JavaScript library for neural network computation
with free topologies, and (2) a custom JIT compilation
approach developed explicitly for dynamically
evolving neural networks. Other JavaScript-based
neural network libraries, such as Synaptic.js, Brain.
js, and TensorFlow.js, were deemed unsuitable due
to their reliance on fixed topologies or batch-based
operations, making them incompatible with the
mutable, heterogeneous networks central to this
study. The baseline approach computes network

activations using a fixed interpretation model
provided by Neataptic.

To accommodate the rapid turnover of up
to 1,000 neural networks in our simulation, we
employ a just-in-time (JIT) compilation strategy
using JavaScript’s V8 JIT engine. This approach
allows us to efficiently calculate network activations
while minimizing the overhead of interpreting
neural computations repeatedly. The steps for
JIT-compiling a neural network are as follows:
1) Parsing the Genotype. Each agent’s neural
network is encoded as a genotype representing
a directed graph. Nodes correspond to neurons,
while directed edges represent synaptic connections
with associated weights. 2) Graph Traversal. The
genotype is parsed into a directed graph, and a
reversed breadth-first search (R-BFS) is initiated
from the output nodes. This traversal identifies the
active subset of the network and prunes disconnected
nodes that do not reach the output. 3) Instruction
Set Generation. An instruction set is dynamically
generated during traversal to calculate each node’s
activation. Instructions are based on stack inputs,
weights, and activation functions, ensuring that only
necessary computations are included. 4) Topological
Ordering. The computational graph is ordered
based on the farthest distance from the output
nodes, ensuring that intermediate activations are
computed in the correct sequence. 5) Dynamic
Function Creation. The instruction set is reversed
to produce a computation sequence from inputs to
outputs. A JavaScript function body is constructed
dynamically using the “Function()” constructor,
representing the minimal computation required for
the network. 6) Compilation and Optimization. The
dynamically created function is executed repeatedly
during the simulation, allowing the V8 JIT engine to
optimize its performance over time.

This approach leverages JavaScript’s ability
to dynamically compile and optimize short-lived
functions, making it well-suited to the high variability
of neural networks in an evolutionary simulation.
By focusing on active subgraphs and minimizing
computation, the JIT-compiled approach reduces
overhead compared to interpreting the network for
every activation. The source code is available on
GitHub [13]

We implemented a controlled benchmarking setup
to evaluate the performance of our JIT-compiled
code generation approach. The simulation used a
snapshot of evolved 927 agents from simulation on
t =4 - 10° steps, and tracked their evolution over At
= 5,000 timesteps, repeating 5 times. Performance

BicHuk KpHY imeHi Muxanna Octporpaacbkoro. Bunyck 1/2025 (150)

127

KOMITHOTEPHI HAYKA

metrics included Average computation time per
simulation step standard deviation.

The performance of the two simulation
approaches — JIT-compiled neural networks
(proposed) and Neataptic-based baseline — was
evaluated from a single simulation snapshot for
5,000 timesteps 5 times each. Snapshot contained
927 agents at the start with. Experiments were
conducted on the M1 Pro processor. Table 1
summarizes the mean and standard deviation of the
neural networks’ processing time per timestep and
load time (initialization).

Table 1
Performance Comparison of Simulation
Approaches
Mean Mean load
Approach Timestep time time
(ms) (ms)
Neataptic (Baseline) 7.165+3.39 | 0.22+0.23
JIT-Compiled | 55061315 | 030+0.18
(Proposed)
The proposed JIT-compiled approach

demonstrates significantly lower mean processing
times by 23 % compared to the baseline
implementation via Neataptic with the cost of neural
network initiation (load). The efficiency gains are
attributed to the dynamic compilation of neural
network calculation instructions, which minimizes

redundant computations. To validate efficiency
outside the model simulation, we’ve randomly
generated 1,000 feed-forward neural networks with
custom topologies for each set of neurons count
N = {10, 20, 30} and connection density DC = {0.0,
0.005, ..., 0.4}. And measured the mean time of
1,000 samples for computing these 1,000 networks
in each set combination. Fig. 1 depicts the results
of this synthetic benchmark, where we can see the
proposed approach is less effective on networks with
high connectivity rates but wins on lower rates when
measured in isolated synthetic conditions.

In our Alife simulation model, creatures evolved
to have mean connections density is Do = 0.05,
calculated as:

b-C.
where N— number of neurons in the network;
C — number of neural connections.

Conclusions. This study addresses a critical
challenge in Artificial Life (ALife) research:
achieving scalable, large-scale simulations
incorporating numerous agents with evolving,
heterogeneous neural networks without prohibitive
computational overhead. This problem is central
to advancing our understanding of noogenesis, the
emergence, and development of intelligence within
virtual ecosystems, as it requires simulations capable

(M

Comparison of Mean Time by Connection Density

Approaches
—8— Neatapic (Baseline)
~®— JIT-Compiled (Proposed)

Mean Time to Compute (seconds)

0 L

0.00 0.05 0.10 0.15

0.20 0.25 0.30 0.35 0.40
Density

Fig. 1. Mean Time vs. Connection Density for Neataptic (Baseline) and JITCompiled (Proposed)

BicHuk KpHY imeHi Muxanna Octporpaacbkoro. Bunyck 1/2025 (150)

KOMITHOTEPHI HAYKA

of running over long timescales with complex and
dynamic agent populations. The inefficiencies
of traditional methods and frameworks, which
often fail to balance performance and flexibility,
underscore the need for innovative approaches to
AlLife simulation.

Our proposed code generation approach
leverages Just-In-Time (JIT) compilation using the
V8 JavaScript engine to optimize the execution
of neural network computations dynamically.
By generating minimal instruction sets for each
network and dynamically compiling them at
runtime, we demonstrated significant performance
gains over conventional approaches, such as the
Neataptic library. Our results show that the JIT-
compiled approach reduces timestep processing
times by 23 % on a given benchmark compared
to the baseline while maintaining scalability agent
count and accommodating complex network
topologies.

The limitations are found in connection density. In
complex topologies with higher connection density,
the proposed method displayed higher compute time,
but in the Alife simulations with evolving neural
networks, it is not common for creatures to evolve a
high connectivity rate

The findings highlight several important insights.
First, JIT compilation is particularly effective for
simulations with frequent mutations to network
topologies, where static computation models incur
substantial overhead. The ability to dynamically
compile and optimize short-lived neural activation

functions allows the simulation to scale efficiently
with population size and network complexity.

By enabling the efficient simulation of larger
populations with more complex and dynamic neural
networks, our approach lays the groundwork for
deeper explorations of emergent intelligence in
artificial ecosystems. Furthermore, the accessibility
of JavaScript as a programming platform makes this
approach particularly well-suited for educational
and entertainment-focused applications, bridging the
gap between high-performance research tools and
broader usability.

Future research should focus on extending this
approachinseveral directions. Solving the downgrade
on higher connectivity rates by utilizing sub-function
patterns for more efficient lining. Additionally,
distributed simulation architectures, where parallel
instances run across multiple machines, could
enhance scalability. Finally, hybrid approaches
incorporating GPU acceleration for batching
subcomponents like sensory data processing while
retaining JIT-based optimization for heterogeneous
neural networks could provide an optimal balance of
speed and flexibility.

In conclusion, the proposed JIT-compiled code
generation approach demonstrates a practical and
effective solution to the computational challenges
of modeling noogenesis in virtual biocenoses. By
bridging the gap between performance and flexibility,
this approach enables more extensive and detailed
AlLife simulations, advancing our ability to study the
emergence of intelligence in artificial ecosystems.

REFERENCES

1. Zachepylo, M., & Yushchenko, O. (2023). The
scientific basis, some results, and perspectives of modeling
evolutionarily conditioned noogenesis of artificial creatures
in virtual biocenoses. Bulletin of National Technical
University “KhPI”. Series: System Anal ysis, Control and
Information Technologies, 2 (10), 85-94. https://doi.org/
10.20998/2079-0023.2023.02.13

2. Melanie, M. (1999). An Introduction to Genetic
Algorithm. https://doi.org/https://doi.org/10.7551/mitpress/
3927.001.0001

3. Stanley, K. O., & Miikkulainen, R. (2002). Evolving
Neural Networks through Augmenting Topologies.
Evolutionary Computation, 10(2), 99-127. https://doi.org/
10.1162/106365602320169811

4. Yaeger, L., (1994) Computational Genetics,
Physiology, Metabolism, Neural Systems, Learning, Vision,
and Behavior or PolyWorld: Life in a New Context. In
Santa Fe Institute Studies in the Sciences of Complexity-
Proceedings, vol. 17, pp. 263-288,

5. Abadi, M., Barham, P.,, Chen, J., Chen, Z.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V.,
Warden, P., ... Brain, G. (2016). TensorFlow: A System for
Large-Scale Machine Learning. Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’ 16.), pp. 265-283. https://doi.org/
10.5555/3026877.3026899

6. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J.,
Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018).
JAX: composable transformations of Python+NumPy
programs. Retrieved from: http://github.com/jax-ml/jax

7. Wang, L., Zhao, M., Liu, E., Sun, K., & Cheng, R.
(2024). Tensorized = NeuroEvolution of Augmenting
Topologies for GPU Acceleration. 16, pp. 1156-1164.
https://doi.org/10.1145/3638529.3654210

8. Che, S., Beckmann, B.M., Reinhardt S.K., and
Skadron K. (2013) Pannotia: Understanding irregular
GPGPU graph applications. Proceedings — IEEE Internatio-
nal Symposium on Workload Characterization, IISWC 2013,
pp. 185-195, doi: https://doi.org/10.1109/[ISWC.2013.6704684

BicHuk KpHY imeHi Muxanna Octporpaacbkoro. Bunyck 1/2025 (150)

129

KOMITHOTEPHI HAYKA

9. Google. Google V8. Retrieved January 21, 2025,
from https://v8.dev/

10. Thielke, F., & Hasselbring, A. (2019). AJIT Compiler
for Neural Network Inference. RoboCup 2019: Robot
World Cup XXIII, 11531 LNAI, 448-456. https://doi.org/
10.1007/978-3-030-35699-6 36/TABLES/1

11. Hu, S.M., Liang, D., Yang, G.Y., Yang, G.W., &
Zhou, W. Y. (2020). Jittor: anovel deep learning framework
with meta-operators and unified graph execution.

Science China Information Sciences, 63(12), pp. 1-21.
https://doi.org/10.1007/S11432-020-3097-4/METRICS

12. Neat;aptic: Blazing fast neuro-evolution & backpropa-
gation for the browser and Node.js. Retrieved January 25, 2025,
from https://github.com/wagenaartje/neataptic

13. Zachepylo, M. (2025). Neural Network computational
graph generation for fast and scalable computation in
Alife models in web. Retrieved fromhttps://github.com/
WorldThirteen/alife neural jit

HOBWI NIAXII TEHEPAIIT KOAY JJIS1 EPEKTUBHOI'O OBPAXYBAHHS
HEWPOMEPEX Y JOCTYIMHHAX ITYYHUX

Muxaiijio 3avyenumno

acmipanT kadenpu cuctemu indopmariii imeni B. O. Kpasus

HamionansHuit TeXHIYHUHN YHIBEpCUTET «XapKIBCHKHH MTOMITEXHITHUHN 1HCTHTYTY,
Kuprndona, 2, Xapkis, Yipaina, 61002, Mykhailo.Zachepylo@cit.khpi.edu.ua
ORCID: 0000-0001-6410-5934

Oaexcanap FOmenko

KaHauaaT Gpi3uKo-MaTeMaTHIHUX HayK, mpodecop, mpodecop kadenpu cuctemn indopmariii
imeHi B. O. Kpasg

HarionansHui TeXHIYHUHA yHIBEpCUTET «XapKiBCHKHUH MOMITEXHIYHANA IHCTUTYTY,
Kuprmnaona, 2, Xapkis, Ykpaina, 61002, agyu@kpi.kharkov.ua

ORCID: 0000-0002-0078-3450

MeTor0 1BOTO JOCHIKCHHS € TONONAHHA KPUTHYHUX OOYHCIIOBAIbHHX BUKIHKIB, 3 SKHMH CTHKAETHCS
JIOCITiKeHHS Ty4qHOTo)UTTA (ALife), 30kpemMa qocsarHeHHs MacTabOBaHUX CUMYJISIIA BETMKUX MOMYJISIIH areHTiB
13 CBOIIOMIOHYBAJLHUMHU Ta T€TEPOTCHHUMH HeWpomepexkamu. Taki cuMynsii HEOOXIJHI JUls BUBYCHHS CKJIAJTHUX
(eHOMEHIB, SK-OT ajanTallis, CAaMOOPTaHi3allisl Ta BHHUKHEHHS 1HTEJIEKTy (HOOTeHe3) B IITYYHHUX eKocucTeMax. [Ipote
00YMCITFOBAJIbHE HABAHTA)XKCHHS, ITTOB’SI3aHE 3 CBOJIOIIEI HEWPOHHHX apXiTEKTyp, OCOOIMBO B YMOBaX BIIKPUTHX
CEPEIOBHIIL i3 BUCOKOIO BapiaTHBHICTIO, 3AJTHIIIAETHCS CYTTEBOIO MEPEITKOIO.

MeTonomnorisi, 3anponoHOBaHa B IIbOMY J0CTIPKEHHI, BAKOPUCTOBYE ITiJIX11 TMHAMIYHOT TeHEepallii Koy, [0 0a3y€eThest
Ha BuKopucTanHi JavaScript-pymris V8 mis Just-In-Time (JIT) kommissiii. L{ei migxin JMHAMI9HO MIEPETBOPIOE TOMOJOTTi
HEHPOHHUX MEPEeX B 00UHCIIOBANBHI rpadu, M0 Ja€ 3MOTY e(h)eKTHBHO I'eHepyBaTU MiHIManbHi HAOOPH IHCTPYKIUii A71s
¢byHKUil akTHBALil, SIKi MOTIM KOMIIUTIOIOTECS Ta ONTUMI3YIOThCS MiJ 4ac BUKOHAHHS. 30CEPEKYIOUUCh HA aKTHBHUX
migrpadax i ycyBaiouu HEmoTPiOHI 0OUKMCIICHHS, [Iel METO/] 3HAYHO 3HIKYE HABAHTAKCHHS, SIKE 3a3BUYAll BUHUKAE TIPH
iHTeprpeTawii HeHPOHHUX MEPEX Ha KOHKHOMY KPOLl CUMYJIALII.

Pesynmpraty 1moKasyoTh, MO 3aMpPOIIOHOBAHMI MiJXi[MEpEeBEpIIye TPAAHIiHI METOAW CTATHYHOI iHTEpIpeTallii,
30KpeMa Ti, IKi BUKOPHCTOBYE 0i0mioTeka Neataptic. TecToBi ekcriepiMeHTH, MPoBe/ieH] Ha nporecopi M1 Pro, mokazainu
3MEHIIEHHS Jacy OOpOOKH OTHOTO KPOKY Ha 23 % 3 MOXIHBICTIO e()eKTHBHO IIPAIIOBATH 3 THCSYaMH areHTiB. Lls
MacITaboBaHICTh 3a0e3Ieuye MOXIIMBICTh TPUBAIOrO 3amycky cumyisiniii ALife, 30epiraroun BHCOKY Oi0JOTi4HY
TOYHICTB 32 OTHOYACHOTO 3HIDKECHHS O0UHMCITIOBAIBHIX BUTPAT.

OpuriHaIBHICTh 11i€] poOOTH TONsATaE B 11 HOBAaTOPCHKOMY 3aCTOCYBaHHI JMHAMIYHOI TeHepalii Komy JI0
CBOJIONIOHYBANBHUX HelpoMmepek y Moaensax ALife, mo Tpaaumiitno noMinyBamucs (ppeiMBOpPKaMH, ONTHMi30BaHUMI
JUTs CTAaTHYHHUX HeHPOHHHX TOTIOJIOT1H abo rpymnoBuX onepariit. JlemoncTpyrodn, mo JavaScript, MoBa, sika TpaauLiiHHO HE
ACOIIOETHCS 3 BUCOKONIPOAYKTUBHUMH CUMYIISLISIMH, MOXKE IOCATAaTH KOHKYPEHTHOI ¢()eKTHBHOCTI 3aBASKH ONTHMI3aMil
B pEaIbHOMY 4aci, I1e JOCIIPKEHHS PO3IIUPIOE JOCTYNHICTh cuMyALiit ALife juist mupioi ayanTopii, BKIIFOYHO 3 TUMH,
XTO 30CEPEKYETHCS HA OCBITHIX UM PO3BAXKAIBHUX 3aCTOCYBAHHSIX.

[MpakTryHa IIHHICTH MHOTO MIIXOJTY TOJATAE B IOTO MOTEHITIAM I03BOJIUTH OLIBII MACIITA0HI Ta JICTAIbHI JIOCKEHHS
IHTENIEKTy Ta MOBEIIHKH, M0 BUHUKAE B INTYYHHX eKOcHCTeMax. [lomonmaHHs OOYHCITIOBABHHX OOMEXKEHb HA€ 3MOTY
BHKOPHCTOBYBATH LIeH (DPEHMBOPK IS TPHBAINX JIOCIIIKEHb HOOTCHE3Y, ITPOIIOHYIOUH HOBI YSIBICHHS PO T€, SIK 3T THBHUH
IHTEJICKT 1 HOBI MOBEIIHKOBI MOJIEN PO3BUBAOTHCS B CBOJIOIIOHYBATBHUX MOMYISMISX. Y BHCHOBKY II€ JOCIIKCHHS
TIPOTIOHYE MaciTaboBaHe, eheKTHBHE Ta THYYKe PIllIeHHS JITsl OOYHMCITFOBABHUX BHKIUKIB cUMYyIsii ALife, o ctBoproe
OCHOBY JUIsl MAOY THIX JTOCITIJKEeHb. [IepcrieKTHBHI HArpsiMU MOABIIIOTO PO3BUTKY Mepe0avyaroTh pO3MOALICH] apXiTEeKTypH
cumyssiii Ta riopuaai GPU-nprckopeHi mixomu JUis TOKpaIeHHs: MacTaboBaHOCTI i TIPOyKTHBHOCTI.

KumiouoBi cioBa: mryuHe SKHTTS, HeHpoMepexi, HEHpPOEBOMIONIS, ONTHUMi3alis MPOXYKTUBHOCTI, JHHAMIYHA
TeHepallis Koy.

BicHuk KpHY imeHi Muxanna Octporpaacbkoro. Bunyck 1/2025 (150)
130

KOMITHOTEPHI HAYKA

BIBLIOGRAPHY

1. Zachepylo M., Yushchenko O. The scientific basis,
some results, and perspectives of modeling evolutionarily
conditioned noogenesis of artificial creatures in virtual
biocenoses. Bulletin of National Technical University
“KhPI”. Series: System Analysis, Control and Information
Technologies. 2023. Ne2 (10). P. 85-94. DOI: https://doi.org/
10.20998/2079-0023.2023.02.13

2. Melanie M. An Introduction to Genetic
Algorithm. 1999. DOI: https://doi.org/10.7551/
mitpress/3927.001.0001

3. Stanley K. O., Miikkulainen R. Evolving
Neural Networks through Augmenting Topologies.
Evolutionary Computation. 2002. Vol. 10, Ne2. P. 99-127.
DOT: https://doi.org/10.1162/106365602320169811

4. Yaeger L. Computational Genetics, Physiology,
Metabolism, Neural Systems, Learning, Vision, and
Behavior or PolyWorld: Life in a New Context. In Santa Fe
Institute Studies in the Sciences of Complexity-Proceedings.
1994. Vol. 17, P. 263-288.

5. Abadi M., Barham P., Chen J., Chen Z.,
Davis A., Dean J., Devin M., Ghemawat S., Irving G.,
Isard M., Kudlur M., Levenberg J., Monga R., Moore S.,
Murray D.G., Steiner B., Tucker P., Vasudevan V.,
Warden P., Brain G. TensorFlow: A System for Large-
Scale Machine Learning. Proceedings of the 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI’ 16.). 2016. P. 265-283.
DOI: https://doi.org/10.5555/3026877.3026899

6. Bradbury J., Frostig R., Hawkins P., Johnson M.J.,
Leary C., Maclaurin D., Necula G., Paszke A., VanderPlas J.,
Wanderman-Milne S., Zhang Q. JAX: Composable

transformations of Python+NumPy programs. 2018.
URL: http://github.com/jax-ml/jax (Accessed at 21.01.2025).

7. Wang L., Zhao M. LiuE. SunK. ChengR.
Tensorized NeuroEvolution of Augmenting Topologies for
GPU Acceleration. Proceedings of the 16th International
Symposium. 2024. P. 1156-1164. DOI: https://doi.org/
10.1145/3638529.3654210

8. Che S. Beckmann B.M., Reinhardt S.K., and
Skadron K. Pannotia: Understanding irregular GPGPU graph
applications. Proceedings—IEEE International Symposiumon
Workload Characterization, ISWC 2013. 2013. P. 185-195.
DOIL: https://doi.org/10.1109/IISWC.2013.6704684

9. Google. Google V8. URL: https://v8.dev/ (Accessed
at 21.01.2025)

10. Thielke F., Hasselbring A. A JIT Compiler for Neural
Network Inference. RoboCup 2019: Robot World Cup XXIII,
11531 LNAI, 448-456. DOLI: https://doi.org/10.1007/978-3-
030-35699-6 36/TABLES/1

11. HuS.M,, Liang D., Yang G. Y., Yang G. W., Zhou W. Y.
Jittor: a novel deep learning framework with meta-operators
and unified graph execution. Science China Information
Sciences. 2020. No. 63 (12), P. 1-21. DOI: https://doi.org/
10.1007/S11432-020-3097-4/METRICS

12. Neataptic: Blazing fast neuro-evolution
& Dbackpropagation for the browser and Node.js.
URL: https://github.com/wagenaartje/neataptic (Accessed at
21.01.2025).

13. Zachepylo M. Neural Network computational graph
generation for fast and scalable computation in Alife models
in web. 2025. URL: https://github.com/WorldThirteen/alife
neural jit (Accessed at 27.01.2025).

Cmamms naoinuwna 27.01.2025

BicHuk KpHY imeHi Muxanna Octporpaacbkoro. Bunyck 1/2025 (150)

131

